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Abstract

High quality reconstructions of image projections is highly sought after within the

field of medical imaging. Medical image reconstruction poses an ill-posed prob-

lem and therefore typical reconstruction schemes rely on iterative optimisation with

additional regularisation. One such optimisation scheme, which is the method ex-

plored in this report, is alternating method of multipliers. This report looks specifi-

cally at the problem of Computed Tomography reconstruction. In this report a total

variation ADMM scheme is implemented which solves linear system of equations

iteratively to minimise. The performance of the method is analysed and the report

examines suggested tolerances, and various iterative solvers are also compared for

performance. Another development within the field of medical imaging are schemes

which use neural networks to learn part or all of the optimisation scheme. This is

highly useful as it combines traditional model-driven approaches with data-driven

approaches. Therefore, in this paper two new fully learned optimization schemes

based on ADMM are proposed which build upon current state of the art learned

schemes. The report finds that these methods are highly performant with ”memory-

less” learned ADMM methods surpassing the performance of the state of the art

”memory-less” Learned Primal dual methods while needing to learn fewer param-

eters with improvements of up 7dB peak signal-to-noise ratio. This report also

contains a learned ADMM with ”memory” that matches the performance of current

Learned Primal Dual methods”
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Chapter 1

Introduction to CT problems

The techniques of medical imagery can be used to gain visualisation of the internal

structures and geometries of the body. It is a wide-ranging field with a number of

different technologies, methods and applications. First introduced in the 1970s, one

widely used technology for medical imagery (though also with industrial usage) is

the CT scan (Computed-Tomography) whereby, typically through the use of X-rays,

non-destructive imaging can be performed. Specifically, within the field of medical

imaging, CT scans can be used for diagnosis through examining material compo-

sition, abnormal geometries and density variation [1]. Examples of diagnoses that

could be achieved thought the use of CT scans includes detecting cancers,lung dis-

ease, blood clots and infections among others [2]. The basic method of a CT scan

is to use a coupled X-ray source and X-ray detector constrained on a rotary table.

As the X-ray source and detector processes around the body at various angle posi-

tions it acquires cross sectional image projections. At each angle, the X-rays will

undergo interactions (i.e attenuation, scattering, passing through) and the measure-

ments relate to the internal and external properties of the observed object which are

then used in reconstruction of an image.

While this is a powerful technique, a few issues arise. Due to the depen-

dence on exposing the examined organic bodies to potentially harmful radiation,

it is important to find ways to minimise this dose. There exists a trade-off between

radiation exposure and detail/accuracy of the reconstruction as for example more

accurate reconstructions may require increased measurements of the object in ques-
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Figure 1.1: Patient entering C-T Scanner

tion. The Filtered Back Projection is the traditional method for reconstruction of

the image from the projections and is suitable for problems with full data, however

in problems with limited data, the use of variational regularisation is often required

to compensate for the missing data. This has led to the application of techniques

such as Total-Variation denoising, for example, that exploit knowledge of priors and

apply this knowledge to optimisation to achieve better quality reconstruction with

limited projections. Alternatively the application of U-Net and ResFCN neural net-

works to improving CT scans provided high quality results is also popular. Overall,

the approaches to improving the quality of CT scans are wide ranging and deserving

of much analysis.



Chapter 2

Introduction to inverse problems

The problem of reconstructing CT scans using the acquired projections comes under

a wider branch of problems termed ”Inverse problems”. The solution to an inverse

problem results in computing an unknown quantity based on indirect measurements

with causal factors that are linked to the unknown quantity itself. CT reconstruction

can to stated to be ill-posed, as with most cases of inverse problems. A well-posed

problem can be defined as:

1. a solution to the problem exists in a given set of “admissible” solutions (exis-

tence condition),

2. the solution is unique (uniqueness condition),

3. the solution depends continuously on input data (stability condition). [3]

In a more mathematical sense, the inverse problem is the solution for f to the

following equation (2.1)

K(f) = g (2.1)

Where f is the unknown quantity and g is the data which can be acquired di-

rectly through measurement. Here, K : X → Y denotes an operator mapping (for-

ward operator) from the X to the Y. The well - posedness of a problem can now be

interpreted as:

1. For all input data there exists a solution to the problem, i.e. for all g ∈ Y

there exists an f ∈ X with K(f) = g .
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2. For all input data this solution is unique, i.e. f 6= v implies K(v) 6= g.

3. The solution of the problem depends continuously on the input datum, i.e. for

all {fk}k∈N with K(fk)→ f we have fk → f . [4]

While in theory the inverse of the forward operator may exist leading to a solution

f = K−1(g)

The problem becomes more complicated when we add a noise or error term

δg especially in CT problems where the popular Filtered Back Projection method

enhances image noise.

K(f) + δg = g

at which point methods that can implement prior knowledge of the uncorrupted

image show their strength. Certainly in any case, by these definitions, the CT scan

problem is not well posed.

It is of interest to understand the physical interpretation of all the terms in the

optimisation problem in particular the operator K which is applied to the image/

slice f .

2.1 Radon Transform
The Radon transform is a type of integral transform used in Computed-Tomography

reconstruction and when in the 2-dimensional space. Referencing back to the intro-

duction and operator K, for the CT problem we select this operator to be the Radon

transform R. The Radon transform can be thought of as the forward projection of

the unknown image. The Radon transform of an image written as a function f(x, y)

when looking at 2-dimensional images is defined as the line integral of f along a

line L inclined at an angle θ with distance s from the origin.

Rf(θ, s) =

∫
L

f(x, y)du
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=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(xcosθ + ysinθ − s) dxdy

where δ(x) is the Dirac delta distribution [5]

Specifically in this project, the parallel beam geometry is used meaning that,

for any given projection, the angle of the beams becomes fixed and the distances

from the origin of the parallel beams are varied meaning s would be a set of m

distances from the origin.

In real cases, the transform will be discretized not continuous, therefore it does

not capture the full information about the image within these forward projections.

2.2 Back-projection

If we were to measure using continuous data Fourier transforms of the various par-

allel projections over a full π interval, the measured object can be completely re-

constructed in the Fourier space. [6]

FtRf(θ, s) = F2f(−psinθ, pcosθ)

=

∫ ∞
−∞

∫ ∞
−∞
F2f(px, py)e

j2π(xpx+ypy)dpxdpy

Then, by changing the integration variables from dpxdpy to |p|dpdθ and using fur-

ther simplification, the equation for the original image in terms of the forward pro-

jection data Rf(θ, s) can be shown as

f(x, y) =
1

2

∫ 2π

0

(Rf ∗ g)(θ, ycosθ − xsinθ)

where

g(t) =
1

2

∫ ∞
−∞
|p|ej2πptdp

can be viewed as a ramp filter hence the term filtered back-projection[6]. A ramp

filter emphasises high frequency components which can amplify unwanted noise,

motivating the need for schemes that rectify this.
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2.3 Variational Regularisation

The reconstruction problem can be solved by a model driven approach which min-

imises a loss function (2.2) shown as

min
f∈X
L(K(f), g) (2.2)

This however is not suitable for ill-posed problems such as CT reconstruction

as an instablity exists meaning that a small error induced in measurementK(f) leads

to a large change in the reconstructed uncertain quantity. A suitable development

on this is to then introduce a regularisation functional S : X → R that encodes a

priori knowledge that is known about ftrue through penalties. The knowledge that

this functional can encode is widely ranging, popular functional include L-p norms

which encode knowledge about the expected magnitudes of the reconstruction and

similarly total variation which encodes knowledge about the expected magnitudes

of the gradients of ftrue. Now the full optimisation problem can be written as

min
f∈X
L(K(f), g) + λS(f) (2.3)

where λ is some regularisation parameter that governs the amount of penalisation

the regularisation functional applies. The optimal regularisation functional varies

from problem to problem and much work has been done to produce performant reg-

ularisers. There exists alternative approaches to solving this problem. The problem

(2.3) could also be formulated as a denoising problem with a maximum a posteriori

(MAP) estimation.

argmax
f

p(f | g)

argmin
f
−log p(g | f)− log p(f)

If we note that −log p(f) represents the prior distribution of f , an equivalence

can be made with the variational regularisation problem’s regularisation functional

−log p(f) = λS(f ) which has lead to the use of sequential applications of denois-

ing steps in ”Plug and Play” type scheme optimization schemes which use readily
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available high performance denoisers [7] and later on this was expanded upon with

”Regularisation by Denoising ” where for certain denoisers with symmetric jaco-

bians, the regularisation function λS(f ) could be explicitly written in terms of a

denoiser functional D(f) as

S(f) =
1

2
fT (f −D(f))

[8] . While the above regularisation is only valid for denoisers with symmetric

jacobians further research has gone on to demonstrate how a more general class

of denoisers can be used in optimization schemes interpreted as ”score-matching”

between f and D(f) [9]. The type of denoiser used can take on many forms even

the use of the previously mentioned UNet and other learned denoisers which forms

the basis for learned regularisation schemes.



Chapter 3

Solving the optimisation problem

Having outlined the optimisation problems and examined current developments, it

helps to understand how an optimisation problem might be solved. Take an equation

min
x
r(x) + h(Kx)

In order to solve this problem, it is common to resort to variable splitting methods.

To do this, r and h can be minimised separately with an auxiliary variable z for the

function h with a constraint that.

z = Kx

this then becomes a constrained optimisation problem with the Lagrangian formu-

lation

L(x, z, λ) = r(x) + h(z) + 〈λ,Kx− z〉

where λ is called the Lagrange multiplier. The problem finds the minimum w.r.t

x and z while maximising w.r.t λ (which is is λ = +∞). From the Lagrangian, we

find the Augmented Lagrangian .

Lρ(x, z, λ) = r(x) + h(z) + 〈λ,Kx− z〉 +
ρ

2
‖Kx− z‖22

where it can be seen that another penalty has been applied.

In the ADMM (Alternating Direction Method of Multipliers) method, the
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functionals r and h are minimised w.r.t to the variables x and z which are updated

sequentially in the following steps.

xi+1 = argmin
x

r(x) +
σ

2
‖Kx− zi +

λi
σ
‖22

zi+1 = argmin
z

h(z) +
τ

2
‖Kxi+1 − z +

λi
τ
‖22

λi+1 = λi +Kxi+1 + zi+1

(3.1)

ADMM has a number of useful properties, for example, each step does not

require an exact solution and it is possible to adapt this method to have separate

constraints on each variable. The CT optimization problem requires specific choices

on the functions r and h and the operator K. Commonly, h has been chosen to be

a L2 data fidelity term and r is often a total variation norm or any other suitable

regulariser, and K is the Radon transform.
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3.1 Non-Learned Solvers

The following section lays out two popular methods of solving the CT reconstruc-

tion problem with both being forms of the ADMM method previously mentioned.

In this section the following notation is used, F(f) = ‖K(f)− g‖22 and G(f) =

‖∇f‖1 .

3.1.1 Linearised ADMM

When attempting to minimise through the ADMM method it helps now to define

the proxmial operator.

prox(x)ρf = argmin
z

f(z) +
ρ

2
‖x− z‖22

There is a clear connection between the ADMM method (3.1) and the proximal

operator as the z step can be put in proximal form by stating the step as

zi+1 = proxτF(Kxi+1 +
λi
τ

)

and it may be possible to write the first step in a proximal form (in cases where the

constraint Kx = z is chosen).

The approach used in the Linearised ADMM to write the x update in proximal

form is to use an approximation around G for the first update step

xi+1 = argmin
x
G(x) +

1

2σ
‖x− (xi −

σ

τ
KT (Kxi − zi + λi))‖22

This makes the solution for xi+1 a proximal mapping of G

xi+1 = proxσG(xi −
σ

τ
KT (Kxi − zi + λi))

Both the x and z update steps are sub-problems. The x subproblem can be solved

by Nesterov’s fast gradient projection (FGP) method for total variation noising.

The z update step can be solved by substituting Kxi+1 + λi
τ

with f and instead

solving the proximal operator of ‖f − g‖22 for penalty parameter σ which has the
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elementwise solution

proxσ‖f−g‖22 =
f + 2σg

1 + 2σ

which is also how the solution is implemented in the ODL library that will be men-

tioned later.

Algorithm 1 Linearised ADMM
1: Given:x0 ∈ X , λ0 ∈ U , z0 ∈ U
2: for i = 1, ...., I do
3: xi+1 ← proxσG(xi − σ

τ
KT (Kxi − zi + λi))

4: zi+1 ← proxτF(Kxi+1 + λi)
5: λi+1 ← λi +Kxi+1 − zi+1

3.1.2 System Solve ADMM

When the constraint x = z is chosen instead, the step for calculating xi+1 corre-

sponds exactly to the xi+1 step in the traditional ADMM Lasso problem [10]. The

proximal for the least-sqaures function F has a closed-form solution.

xi+1 = (KTK + ρI)−1(KTg + ρ(zk −
λk
ρ

))

For large problems such as this Computed Tomography problem it is clearly not

advisable to compute exactly the inverse (KTK + ρI)−1. This can then be solved

with an equation solver for example an iterative solver like LSQR or GMRES lead-

ing to an ADMM solution with an outer loop and an inner loop for the iterative

solver of the fidelity function. Important aspects to know about this problem is that

the condition number of (KTK+ρI) has dependency on the number of projections

along with the choice of value ρ which has implications for how easy it is to solve

the system of equations.

Algorithm 2 System Solve
1: Given:f0 ∈ X , ho ∈ U
2: for i = 1, ...., I do
3: xi+1 ← (KTK + ρI)−1(KTg + ρ(zk − λk

ρ
))

4: zi+1 ← proxτF(xi+1 + λi)
5: λi+1 ← λi + xi+1 − zi+1



Chapter 4

Learned Optimisation

While the previously shown TV regularisation method does produce satisfactory

results for certain applications an alternative would be to consider the idea of a

learned optimisation. Research has shown that one can choose to learn iterative

reconstruction schemes where proximal operators can be replaced by other oper-

ators which are not proximal operators. Typically, the proximal operator for the

’regularisation functional’ is replaced as this encodes the a priori information and

furthermore, typically the data fidelity term proximal has a closed form solution

which provides good results if the forward operator is a good estimate[11]. By re-

placing the regularisation proximal with a neural network for example, using large

datasets, a priori information is encoded into the scheme without the need to spec-

ify the regularisation functional beforehand. Another direction researchers who

wish to apply iterative schemes have taken is to learn not just the regularisation

component but the full iterative reconstruction scheme. The learned optimisation

schemes developed in this thesis are motivated by and follow a similar scheme to

work produced on Learned Primal-dual Reconstruction[12]. Therefore, the Learned

Primal Dual Hybrid Gradient and Learned Primal Dual algorithms will be laid out

here for context. These algorithms learn two proximal operators (in the data space

and reconstruction space) as in the fashion of a full learned iterative reconstruction

scheme. It is useful to outline the original non-learned Primal Dual Hybrid Gradient

algorithm which these two learn methods are based on.
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4.1 Primal Dual Hybrid Gradient
The Primal Dual Hybrid Gradient method is a splitting method for constrained op-

timisation also known as the Chambolle-Pock algorithm. Note that here K is the

forward operator and ∂K is the adjoint of the forward operator with image f .

Algorithm 3 Primal Dual Hybrid Gradient

1: Given:σ, τ > 0 s.t στ‖K‖2 < 1, γ ∈ [0, 1] and f0 ∈ X , ho ∈ U
2: for i = 1, .... do
3: hi+1 ← proxσF∗(hi + σK(f̄i))
4: fi+1 ← proxτG(fi − τ [∂K(fi)] ∗ (hi+1))
5: ¯fi+1 ← fi+1 + γ(fi+1 − fi)

4.2 Learned Primal Dual Hybrid Gradient

Algorithm 4 Learned Primal Dual Hybrid Gradient
1: Given:f0 ∈ X , ho ∈ U
2: for i = 1, ...., I do
3: hi+1 ← Γθd(hi + σK(f̄i))
4: fi+1 ← Λθp(fi − τ [∂K(fi)] ∗ (hi+1))
5: ¯fi+1 ← fi+1 + θ(fi+1 − fi)

With this algorithm, traditionally in a non learned environment various step-

size/penalty parameters would need to be selected, however due to this being a

learned method, these can be left as variables to be determined by the network. The

parameters of the algorithm are the step lengths σ , τ , the over-relaxation param-

eter, θ and the general parameters of the primal proximal network θp and the dual

proximal network θd.

4.3 Learned Primal Dual

Algorithm 5 Learned Primal Dual
1: Given:f0 ∈ X , ho ∈ U
2: for i = 1, ...., I do
3: hi+1 ←Γθdi (hi,K(

¯
f
(2)
i−1), g)

4: fi+1 ← Λθpi
(fi, [∂K(f

(1)
i−1)] ∗ (h

(1)
i+1))
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The Learned Primal Dual method expands on the PDHG method in number of

ways.

1. First the network expands the primal space to add memory between iterations

f = [f (1), f (2), ....., f (Nprimal)] ∈ XNprimal

2. and similarly it extends the dual space U to UNdual .

3. The network allows the network to choose how to combine the dual variable

hi and the operator transformed primal variable K(f̄i) for the first proximal

4. The network learns how to combine fi−1 and ∂K(f
(2)
i−1)

5. The last change is to allow the learned proximal operators to vary at each

iteration i = 1, ...., I

4.3.1 Learned ADMM

The learned ADMM method which has been developed for this thesis has many sim-

ilarities to the Learned PDHG. It takes inspiration from the Linearised - ADMM.

Like PDHG, there are two learned proximal operator both in the image and sino-

gram space however this method adapts the way the dual variable (u in this case)

is updated in the network. Similarly to the Learned Primal Dual Hybrid Gradient,

parameters σ and τ are learned along with the general parameters of the primal

proximal network θp and the dual proximal network θd.

Algorithm 6 Learned ADMM
1: Given:x0 ∈ X , λo ∈ U
2: for i = 1, ...., I do
3: xi+1 ← Γθ1i (xi − τKT (Kxi − zi + λi

τ
))

4: zi+1 ← Λθ2i
(σKxi+1 + λi

σ
, g)

5: λi+1 ← λi + γ(Kxi+1 − zi+1)
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4.3.2 Learned ADMM +

Following the essence of the Learned Primal Dual method, compared to the Learned

Primal Dual Hybrid Gradient method, the Learned ADMM method is expanded by

adding memory channels for the two primal variables x and z . The network is also

allowed to choose how to combine xi and σ
τ
K∗(Kxi−zi+ui)) and how to combine

Kxi and zi. Finally, the scheme is also allowed to learn different proximal operators

for each iteration.

Algorithm 7 Learned ADMM +
1: Given:f0 ∈ X , ho ∈ U
2: for i = 1, ...., I do
3: xi+1 ← Γθ1i (xi,

σ
τ
KT (Kxi − zi, λi))

4: zi+1 ← Λθ2i
(Kxi+1 + λi, g)

5: λi+1 ← λi +Kxi+1 − zi+1

There is in fact a clear relationship between Linearised ADMM and Primal

Dual Hybrid Gradient. With certain preconditioners, the Linearised ADMM is

equivalent to Primal Dual Hybrid Gradient applied to the dual[13] however this

equivalence does not translate to the basic learned schemes (Learned ADMM and

Learned PDHG) as in the Learned ADMM scheme the update of the dual λ is kept

as a separate step and the dual is also strictly divided by the penalty parameters

when used in the input for the x and z updates. However, as the extended learned

methods are allowed to learn how to combine the variables the two methods become

incredibly similar which was something that was revealed during the development

of the Learned ADMM + scheme and the similarity of the results is demonstrated

later in this paper.



Chapter 5

Implementation

5.1 Operator Discretization Library (ODL)

In order to solve the aforementioned problems, this project makes extensive use of

the Operator Discretization Library. ODL was developed of fast prototyping of in-

verse problems and contains a number of useful tools. Examples of these include

linear and non-linear operators for tomography problems with implementations that

use CUDA for GPU acceleration, the ability to generate the Shepp-Logan phantom,

the implementation of popular solvers for inverse problems such as ADMM and

PDHG and Filtered Back Projection, and interfaces for TensorFlow. For this par-

ticular project, ODL is used to generate the phantoms, to solve the total variation

ADMM problem which is used as a baseline and serves as a starting point for the

System Solve ADMM. ODL is integrated with the SciPy python scientific comput-

ing package which contains a number of methods for solving systems of equations.

ODL also provides the Radon transform (Forward projection) and the transpose

of the Ray transform (Back-projection) which can then be made into TensorFlow

layers.

5.2 Ellipse Phantoms: Training Data

Having outlined the fundamentals of the CT problem, there still lies the question of

what data do we wish to solve the problems with and also train the neural networks
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as neural networks work best with large amounts of training data. One method

that answers these questions for the 2-D problem is to train the network on large

amounts of clinically realistic simulated human data. However, in order to test

whether the new schemes are valid propositions, a good starting point would be

to work with a dataset of images formed from compositions of ellipses in various

configurations [12]. This has the advantage of being able to generate training data

sets of whatever size is needed. The data set generated in this case consists of

images of many overlapping phantoms with different grayscale values. The images

have pixel dimensions specified to be 128x128. The corresponding sinogram data is

obtained using a total of 60 different angles (equidistributed over 180 degrees) for

projections per image with the forward operator and Gaussian noise with magnitude

of 5% of the mean magnitude of the sinogram data is applied.

5.2.1 Shepp-Logan Phantom: Validation Data

For validation step the Shepp-Logan phantom is used. The Shepp-Logan phantom

was developed in 1974 is a set formation of ellipses used as a standard for CT re-

construction metrics. Though it may not be seen as a realistic phantom in a modern

setting, it serves as a good first test. What has been noted about this image is that

similarly to organic medical images there is sparse gradients meaning that there

are significant continuous areas of constant values followed by edge-discontinuities

[14] which relates back to the original choice of total variation penalisation.

5.3 Evaluating the results (SSIM/PSNR)

In order to evaluate the results, two metrics are used.

Peak Signal to Noise ratio:

PSNR is a long-standing metric however it is noted that PSNR does not al-

ways relate directly to perceived visual quality. It relies on a simple summation of

error across the image which is not how the human visual system processes error.
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Figure 5.1: Ellipses Phantom

Figure 5.2: Sinogram with 5% noise

Therefore a more appropriate indicator of quality was needed.

PSNR = −10 · log10(
MSE

MAX2
)

WhereMSE is the mean squared error 1
n

∑n
i=1(xresult−xtrue)2, MAX is the high-

est possible pixel value and n is the number of pixels.

SSIM:

Conversely SSIM which was designed specifically for measuring image qual-

ity is based on the change in structural information in the image. It uses three com-

parisons;contrast, structure and luminance to create a composite metric [15]. This
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Figure 5.3: Shepp Logan Phantom

Figure 5.4: Sinogram of Shepp Logan Phantom with 5% noise

metric aligns more closely with the human visual perception system using windows

x and y with dimensions N ∗N

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

• σ2
x is the variance of x

• σ2
y is the variance of y

• σxy is the covariance of x and y

• µx is the average value of x
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• µy is the average value of y

• L is the pixel dynamic range

• k1 and k2 << 1

• c1 = (k1L)2c2 = (k2L)2 are variables added for stability when the other

denominator values are very close to zero.

5.4 Neural Network

The machine learning framework through which this method is implemented is Ten-

sorFlow, specifically TensorFlow 2.0 which runs natively in python. TensorFlow is

a robust tool which has integration with many of the tools needed for this project

such as ODL operators that function as TensorFlow layers. The back-end can also

be GPU accelerated, in the case of using the tensorflow-gpu package.

The training was done using a Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz

which has 12 cores and 24 threads cpu and more importantly a nVidia Tesla K40c

with has 12GB GDDR5 and 2880 CUDA cores. The time taken to train the various

networks was in the range of 10-18 hours depending on the network being trained.

Alder et al notes that for CT reconstructions, many of the useful properties for

the forward operator and prior are translation invariant meaning the reconstruction

operator should be translation invariant which suggests use of convolutional neural

networks as building blocks for the neural network[16].

Two schemes are chosen for the forms of the learned proximal operators, firstly

a series of convolutions and non linearities and secondly an identity plus a series of

convolutions and non linearities. While the former is more to keep the learned op-

erators more in the spirit of true non-learned proximal operators, the second choice

is in the form of a residual network which has the benefit that each update does not

need to learn the whole solution but rather only an update which has been shown to

be easy to train.

Id+Ww3,b3 ∗ Ac2 ∗Ww2,b2 ∗ Ac1 ∗Ww1,b1



5.4. Neural Network 27

Still following from the format used for Learned Primal Dual Reconstruction

[16] Affine operators parametrised by weights wj and biases bj are used which map

Wwjbj : Xn → Xm

and the kth component is given by

(Wwj ,bj([f
(1), ..., f (n)])(k) = b

(k)
j +

n∑
l=1

w
(l,k)
j f (l)

The activation functions used are Parametric Rectified Linear Unit (PReLU)

functions.

Acj(x) =

x, if x ≥ 0

−cjx, else


The difference between the PReLU activation and the popular ReLU is that

rather than having the slope of negative portion being predefined, this value−cjx is

learned by the network. This activation function has very little additional computa-

tional cost while typically producing superior performance. [17]

The learned proximal networks relies on convolutions of kernel size 3 x 3 pix-

els and each of the learned proximal networks use three layers of convolutional

neural networks. For the Learned ADMM, the number of input channels are limited

compared to the learned ADMM + as only one input channel is used for first learned

proximal network leading to the channel structure 1 → 32 → 32 → 32 → 1 and

for the second proximal network two input channels are used leading to the channel

structure (due to also using the corresponding sinogram data as an input for data

fidelity) 2 → 32 → 32 → 32 → 1. In total, this amounts to approximately 2.4 x

104 learned parameters.

In comparison, the Learned ADMM + has a channel structure of 6 → 32 →

32 → 32 → 5 for the first and second proximal (which includes the corresponding

sinogram data as an input) networks as additional channels are added to the primal
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variables to act as memory in the neural network, note that this is one less input

channel than used in the Learned Primal-Dual scheme meaning fewer parameters

are learned. 2.2 x 105 compared to 2.4 x 105

The network was trained to learn 10 ADMM iteration with each iteration hav-

ing 2 ”proximal” steps and one dual update for each of the proximal methods shown

in this project. For the learned ADMM method the learned parameters and proximal

operators were kept consistent across each iteration while for the learned ADMM +

method at each iteration a new set of learned parameters are learned.

In order to train the network an appropriate loss functional must be chosen. In

this case the loss is chosen to be a mean squared error function of the reconstructed

image and the true image. For the n length image variable x with loss L(θ)

L(θ) =
1

n

n∑
i=1

(xresult − xtrue)2

This thesis also contains a promising alternative which is to consider the L1 norm

for the objective function as this encourages sparsity in the difference between the

learned and true image.

L(θ) =
1

n

n∑
i=1

|xresult − xtrue|

For both the Learned ADMM and the Learned ADMM + 10,000 total batches

were used i.e each time the network was trained on 10,000 different ellipses pat-

terns. The schedule of the learning rate was a cosine decay meaning

rt =
r0
2

(1 + cos(π
t

tmax
))

The optimiser that was chosen is ”ADAM”. Introduced in 2015, the ADAM

optimizer is highly popular and has a number of important distinctions from say a

typical Stochastic Gradient optimiser. ADAM is relatively inexpensive as it only

requires first-order gradients. The method computes individual adaptive learning

rates for the different parameters from approximations of first and second moments
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of the gradients. This method combines advantages of two popular methods; Ada-

Grad and RMS Prop and it’s performance training CNNs is known to be better. [18]

The learning rate was set to 10−3 , batch size was set to five and the gradient norms

were clipped to 1 for training stability.

Figure 5.5: Diagram of neural network structure.The inputs to the first network 1 or 6 chan-
nels and the inputs to the second network have 2 or 6 channels depending on
whether we implement Learned ADMM or Learned ADMM + respectively
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Results

As a baseline, to examine methods developed and implemented within this thesis,

results are compared to two popular methods. The widely-established Filtered Back

Projection and the Total Variation solution, solved using Linearised ADMM.

6.1 Filtered Back Projection

Figure 6.1: Filtered Back Projection

As a baseline Filtered Back Projection results are shown. The figure clearly

shows a noisy image with artifacts due to the lack of sufficient projections and

features which cannot be discerned such as the dots which should be present near
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SSIM 0.5939
PSNR 21.9679

runtime 0.120s

Table 6.1: Filtered Back Projection Metrics

the bottom. The poor result is reflected in the quality metrics; the reconstruction

however, is almost instantaneous.

6.2 Total Variation
For the ADMM optimisation, considering later on it will be compared to methods

which learn optimal parameters for solving the problem, in order to have reasonable

comparison the step size/quadratic penalty parameters σ, τ and γ and the regular-

isation parameter for the total variation function were tuned to provide optimal

performance in terms of PSNR and SSIM. This method is also allowed a boosted

starting point by choosing the filtered back projection for the initial value x0 which

serves as a good initial approximation and dramatically improves results. Rather

than using only 10 iterations as used in the learned methods, 100 ADMM iterations

are used as this provides better results that start to approach the performance of the

learned methods.

Figure 6.2: Total Variation ADMM



6.3. Total Variation with Linear System Solve 32

SSIM 0.9709
PSNR 26.8363

runtime 4.390

Table 6.2: TV-ADMM metrics

It should be noted that these results suggest very good performance with re-

gards to SSIM, the PSNR results are subpar compared to the learned methods. Vi-

sually, this result presents a noticeable blurriness around the round edges of objects

in the phantom.

6.3 Total Variation with Linear System Solve
The total variation when solving the linear system poses its own problem. It is not

advisable to solve the linear system exactly due to the high expense of inverting the

matrix KTK + ρI in many cases as the system can become very large however,

when using an iterative solver this inversion can be avoided. Another consideration

is to what tolerance should the linear system of equations be solved specifically

from the CT reconstruction problem as the tolerance of the solve has implications

for the noise and data fidelity as well as convergence properties. Initially the choice

was to solve the linear system using LSQR however this produced suboptimal per-

formance. Therefore, this thesis examines the performance of various solvers for

the linear system of equations in terms of time taken to achieve a tolerance of 6 x

10−5. For the best performing solver, the quality of the reconstruction as a function

of the accuracy of the system solver is also explored.

6.3.1 LSQR

This method is congugate gradient type method based on Golub-Kahan bidiagonal-

ization. The LSQR solver has relatively low storage requirements and has better

results for ill- conditioned matrices than simple least squares methods.[19]

6.3.2 Bicgstab

The biconjugate gradient stabilized method combines ideas of the conjugate gradi-

ent squared method with successive overrelaxation given by a three-term recurrence
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relation. It also requires more limited memory space than GMRES though this may

not be a huge concern for a problem of this size.

6.3.3 GMRES

GMRES is a minimal residual method. This method has some benefits for stability,

convergence as a minimal residual method, convergence to the required tolerance

is guaranteed and does not have problems with early termination. The GMRES

runtime of LSQR 99.989s
runtime of BICGSTAB 40.828s

runtime of GMRES 31.384s

Table 6.3: Runtime of various iterative solver with time in seconds

solver provides the best solution being over 10 seconds faster than the next closest,

BIGSTAB.

6.3.4 Reconstruction as a function of tolerance

The relationship between reconstruction performance, in terms of both PSNR and

SSIM, and the tolerance to which the system of equations is solved is outlined in

this graph. This is highly important as increased accuracy increases the time to

solve the system so we would like to understand the minimum tolerance that still

provides adequate properties.

Using a range of different tolerances for the linear solver the ADMM scheme

was run for 50 iterations and the final SSIM and PSNR results were recorded. The

graph shows clear diminishing returns. Interestingly, the PSNR shows diminishing

returns much earlier compared with SSIM re-emphasising the benifits of SSIM as a

metric.
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(a)

(b)

Figure 6.3

Figure 6.4: Log base 10 of Tolerance against (a) PSNR (b) SSIM
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Figure 6.5: Reconstruction using System Solving ADMM

The result for this ADMM variant has a grainier quality and poor SSIM for

the given number of iterations and slower run time which is reflected in the poor

metrics.

SSIM 0.932783303572
PSNR 27.6081991647

runtime 7.080s

Table 6.4: Results for ADMM with system solver

6.4 Learned ADMM
The Learned ADMM reconstruction marks a significant improvement over the non-

learned methods. It should be noted that until the last iteration, the reconstruction

was relatively poor and the error is not monotonically decreasing with each iter-

ation, similar to what was seen in Alder et al [16] which implies that rather than

the expected iterative scheme the network performs some image enhancements and

then applies reconstruction step towards the end of the scheme. What can be noted

qualitatively about the reconstruction when compared to the non-learned methods

is vastly superior quality of edges implying some edge-preserving steps are taken,
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though there is some localised contrast inconsistency which is the only noticeable

downside to this method compared to Learned ADMM +. One possible reason for

this could be that while it is hoped that the network can learn some gradient based

step similar to the total variation norm proximal step it is not hard encoded into the

network so there may not be much penalisation for high gradients (implying larger

localised changes in value). The following figures show one step from the learned

scheme. Intuitively, when we compare the output of this step to the euclidean norm

of the contrast gradient of the Shepp-Logan phantom in the x and y directions there

appears to be some similarity.

Figure 6.6: 3rd step of Learned ADMM compared to sum of the gradient of the Shepp-
Logan phantom

Figure 6.7: Sinogram of 3rd step
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Figure 6.8: Learned ADMM with L2 Loss function

SSIM 0.98302235622
PSNR 35.4152460377

runtime 0.283

This method is further built on by attempting to solve the issue of colour in-

consistency by training using an L1 norm loss function to encourage sparsity in the

error. The results are very promising showing excellent SSIM results with a visi-

bly crisper image though it is interesting to note that this use of the L1 norm was

insignificant in improving the PSNR metrics.

Figure 6.9: Learned ADMM with L1 Loss function
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SSIM 0.990524696686
PSNR 35.11833905687

runtime 0.340

6.5 Learned ADMM +
The Learned ADMM + method further improves on the previous learned method

when using the L2 norm loss function. By incorporating memory and learning an

update, the SSIM and PNSR values improve further with PNSR increasing over

3dB. It should be noted that unlike the base Learned ADMM, the residual for this

method reduces with each iteration, more similar to a traditional ADMM scheme.

The problem of localised colour inconsistency that was seen in the Learned ADMM

is noticeably reduced with Learned ADMM +, which is reflected in the SSIM score.

Figure 6.10: Learned ADMM + reconstruction

SSIM 0.987537365257
PSNR 38.8156018375

runtime 0.291

Table 6.5: Learned ADMM + metrics
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6.6 Final Results Table

In this table, results for the Primal Dual methods are also included for compari-

son (in italics) and are taken from the Learned Primal Dual Reconstruction paper

[16]. The runtime results for these methods were not included as the comparison is

not useful because different hardware was used. The results show that the ADMM

methods produce better overall results in both SSIM and PSNR score though as ex-

pected, the Learned ADMM+ and Learned Primal Dual show similar performance.

All of the learned methods are much faster that the non-learned methods as they

require far less applications of the forward and back projection operators.

Name SSIM PSNR Runtime
FBP 0.5939 21.9679 0.120

PDHG-TV 0.9290 28.06 N/A

ADMM-TV 0.9709 26.8363 4.390

ADMM-SS 0.9328 27.6082 7.080

Learned PDHG 0.9090 28.32 N/A

Learned Primal-Dual 0.9890 38.28 N/A

Learned ADMM 0.9830 35.4152 0.283

Learned ADMM L1 0.9905 35.1183 0.340

Learned ADMM + 0.9876 38.8156 0.291

Table 6.6: Full Table of Results
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Discussion

The results show that all methods implemented in this thesis show significant im-

provements over the baseline Filtered Back-projection. The results also show that

the use of Linearised ADMM with the total variation regularisation provides no-

ticeable improvements over previous implementations of baseline iterative methods

(Primal Dual Hybrid Gradient) while exhibiting a similar runtime. The Linearised

ADMM also provides high quality results in terms of structural similarity, though

not necessarily in terms of PNSR performance which is very similar to what was

noticed about the PDHG method in [16]. The obvious downside to iterative meth-

ods such as this are the increases in time to run the method (more than 30x longer

than FBP) and the need to tune the parameters for the problem, however it may be

argued that compared to the length of time needed to train a learned method for in-

stance, the time taken for the tuning of parameters is insignificant and even though

it takes 30x longer than FBP, FBP itself is extremely fast. The results were also not

significantly worse than the learned methods as there is equal localised constrast

consistency. However the clearer edges provided by the learned methods might be

more beneficial to the task of recognizing anomalies in medical scenarios so the

trade off between developing a learned method compared to easily implementable

methods such as Linearised ADMM must be considered.

With regards to the linear system solving ADMM, the proposed alternative

solvers (BICGSTAB , GMRES) provide significant improvements over the LSQR

solver which is typically suggested for this type of problem. This method does how-
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ever have significant drawbacks. Even with the improved speed of the linear system

solve, within the Python SciPy enviroment, construction and solving the linear sys-

tem still represents a significant overhead over elementwise functions which are

sometimes used for the L2 norm proximal and so it would be useful to explore

how to make this more efficient but as presently constituted in this thesis the linear

system solve method is not performant enough to be competitive with current meth-

ods. With regards to the learned methods, the most significant benefits were in the

Learned ADMM method. The closest point of comparison would be the Learned

PDHG which has almost exactly the same number of parameters to learn and a

similar formulation which also does not use ”memory channels”. Even with these

similarities, the Learned ADMM method has significantly better performance with

7db improvements in PSNR and a 0.8 improvement in SSIM (due to how SSIM

scales an increase of 0.8 represents a noticeable improvement) and it much is closer

in performance to learned primal dual methods that incorporate memory. Some of

the iteration reconstructions observed in the method had some unusual properties

for example the 3-4th step detects and highlights the outer rings, the 9-10th step

performs a colour inversion. The significant difference in the type of results pro-

Figure 7.1: Step 9 of Learned ADMM

duced by the network at each ADMM iteration is most likely due to not using a

residual network (i.e learning the whole update) for each step.

The thesis also shows significant improvements to the results of the training
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can be found by using an L1 norm learning objective to induce sparsity in the error.

Previous work has noted the issues with the L2 norm as it assumes that the signifi-

cance of noise is independent on the local characteristics of the image and that the

noise is white Gaussian and suggested novel loss functions based on SSIM + L1 or

L1 minimisation followed by L2 minimisation which may improve even on the L1

norm performance [20].

Finally, looking at the Learned ADMM + method, while the method does pro-

vide similar results to the Learned Primal-Dual method, the Learned ADMM + is

not a significant improvement. This is likely because in Linearized ADMM which

the Learned ADMM methods are based on can be seen as optimally preconditioned

PDHG methods in many cases, so as more of the parameters and combinations

become learned, the difference between the two methods becomes less defined.

Because the Learned ADMM + learns a residual update to the current update, it

exhibits vastly different properties to the Learned ADMM in terms of how the re-

construction changes iteration to iteration. This method shows an improvement in

reconstruction quality at each iteration and the type of the reconstruction does not

appear to change between ADMM steps. However, the Learned ADMM + actu-

ally has slighty worse performance than the Learned ADMM trained on the L1 loss

function even when the Learned ADMM + is trained on L1 loss function, while at

the same time the Learned ADMM uses around 1/6th of the parameters.

Interestingly all reconstruction methods fail to produce separation of the three

circles at the bottom part of the Shepp-Logan phantom, so it might be assumed that

this is a intrinsic limit due to lack of projections and the noise present.

Figure 7.2: Close up of bottom of reconstruction
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General Conclusions

8.1 Conclusions

This report manages to explore various iterative solvers for the system of equations

needed for the data fidelity proximal operator and provides suggestions for appro-

priate solvers which show improved performance over the widely used LSQR iter-

ative solver with these results suggesting the use of GMRES while also examining

how the quality of the reconstruction is affected by the degree of accuracy chosen

for the system solver. The report also provides the experimental results which give

clear guidance as to the required tolerance to solve the system in order to provide

convergent results with 60e-5 being a good guidance point for problems of this size

allowing for the method to use optimal run time by not solving the system to ex-

cessive levels. This report also shows that by using the Linearized ADMM as the

base framework for the neural network, a high performance reconstruction scheme

can be learned while using significantly fewer learned parameters when compared

to the Learned Primal-Dual method. The report also finds that while the Learned

ADMM shows far better results that it’s counterpart Learned Primal Dual Hybrid

Gradient, the extended Learned ADMM + scheme does not show any significant

improvements over the learned Primal-Dual scheme. Finally, when evaluating the

reconstruction quality based on SSIM which is widely deemed to be a superior met-

ric compared to PSNR, the use of the L1 norm as a loss function for Learned meth-

ods produces superior results, even comparing to more complex networks trained
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on the L2 norm loss function.

8.2 Future Work
While the learned methods has showed promising results, there are many aspects

that could be considered for improvement. Firstly, rather than having a full iterative

reconstruction scheme which needs to learn two proximal networks, the use of non-

learned methods to solve the data fidelity update should be considered as, so long as

the assumptions on the noise model and forward operator are correct, learning this

step is unnecessary [11]. This could not be implemented in this project due to time

constraints. Another possible area of exploration is refining the neural network, in

this project a relatively simple structure is used with no network regularisation such

as dropout, furthermore the depth of the CNN could be increased with possibly

some use of recurrent networks to more natively handle keeping memory between

iterations.

Finally, looking at the results produced by learned methods compared to the

non learned methods, one area in which the non learned methods exceeded some

of the learned method is the ability to capture the sparse gradient nature of solu-

tion/contrast consistency in contiguous regions. Therefore it may be advisable to

extend the Learned ADMM to a multiblock system which directly incorporates the

gradient of the image rather than indirectly hoping the network will learn to encode

a gradient.



Appendix A

Reconstruction Images

(a) (b)

(c) (d)

(e) (f)

Figure A.1: (a)FBP (b) TV-ADMM (c)ADMM-SS (d) Learned ADMM (e) Learned
ADMM L1 (f) learned ADMM +
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